

Robert Eller Associates LLC CONSULTANTS TO THE PLASTICS AND RUBBER INDUSTRIES

THERMOPLASTIC ELASTOMERS: MEETING AUTOMOTIVE CHALLENGES

PRESENTED BY: Bob Eller, President Robert Eller Associates LLC Phone: 330-670-9566 E-mail: bobeller@robertellerassoc.com www.robertellerassoc.com

PREPARED FOR: SPE TPE 2013 DETROIT, MI (USA)

October 7, 2013 b/mydox/papers/SPE TPO 2013

- The global automotive marketplace
- Current auto TPE example applications
- Identify the challenges

 \bigcirc

- How challenges met currently and potentially in the future with TPEs
- Future implications for TPE suppliers and the auto supply chain
- Examine the automotive TPE paradigm shift

THE AUTOMOTIVE TPE CHALLENGES

- Cost reduction
- Weight saving/help meet shifting emissions requirements
- Luxury experience without excessive cost adds
- Opening new applications
- Simplified parts fabrication
- Adhesion: the path to new TPE applications
- Controlling acoustics
- Controlling Foaming
- Globalization effects
 - implementing global TPE standards
 - implications of global platforms
 - regional supply chain shifts

IMPORTANCE OF AUTOMOTIVE VARIES BETWEEN TPEs

TPE TYPE	AUTO SHARE OF GLOBAL DEMAND	RECENT INCUMBENT	NOTE/ AUTO TARGETS
ΤΡΟ	80%	None – TPO dominates	Bumper fascia, interior trim, skins
o-TPV	50%	NBR/PVC, ECO, CPE, EPDM	Boots/bellows, hose, short air ducts
SEBS	15%	EPDM, o-TPV	Auto share growing via soft touch, slush skins, seals
TPU	11%	EPDM, o-TPV	Grommets, sleeves, door sills, overmolded films, shift knobs, lamp seals, slush molding, wire/cable
COPE	10%	EPDM, o-TPV, fluorosilicones	Under-hood ducting, wire/cable, soft touch trim panels

 \bigcirc

- Dominant Incumbent:
 - EPDM

 $\overline{\mathbb{O}}$

- •TPE Challengers:
 - o-TPV, SEBS
- Dynamic vs. static requirements differ
 - Acoustic/wind noise performance (requirements increasing)
 - Adhesion (to glass, polycarbonate) emerging
 - Parts integration opportunities
 - Surface friction properties
 - Meeting regional performance differences
 - Overcoming institutional resistance
 - The small car challenge

Large potential auto TPE market

- India pass car growth (2011-2020): $3 \rightarrow 6-9$ MM units
- India + China could represent growth potential ("11 20") of 20MM vehicles or 50kT at current SEBS and o-TPV compound utilization rates with no further penetration

SOURCES: Alix Partners; Indian Auto Mfrs. Ass'n.; Robert Eller Associates LLC, 2013

N. AMERICAN SHIFT TO SMALLER SIZES \rightarrow AFFECTS TPE DEMAND

SEGMENT	SALES	GAIN/	
	2005	2014	LOSS,%
Compact utilities	6.0	13.4	7.4 -
Compact sedans	10.6	14.2	3.6
Mid-sized sedans	14.9	18.1	3.2
Wagons/Hatchback	5.3	7.5	2.2
Mid-sized utilities	15.2	12.4	-2.8
Mid-sized PUTs	4.2	1.3	-2.9
Full size PUTs	14.9	11.6	-3.3
Vans/Minivans	8.7	5.3	-3.4
Large sedans	8.2	4.1	-4.1
TOTAL SALES, MM UNITS	16.9	15.8	

Smaller vehicles share gain: -smaller parts sizes

- increased pressure for soft interior features
 - -increased under-hood temperatures

DATA SOURCE: AUTO PACIFIC

SOURCE: ROBERT ELLER ASSOCIATES LLC, 2013

 $\overline{\mathbb{O}}$

r/mydox/visio/auto key tgt for new tpes 2013.vsd

The challenges, how to:

- Implement global specifications (starting)
- Have a uniform global TPE supply and fabrication footprint
- Retain value associated with global standards
- Avoid commoditization and price challengers from local TPE suppliers

Background:

 \bigcirc

- Global platform usage is increasing
 - VWs MQB platform (5.5 MM global vehicles/yr) is leader
 - Platform volume for other OEMs (Toyota, Ford, Hyundai, GM is 2-3 MM vehicles/yr)
 - Typically on B/C segment vehicles
 - Creates opportunities for TPE suppliers with global footprint (a "must have")
- TPEs offer greater product uniformity between regions for TPEs vs thermoset rubbers
 - OEMs prefer uniform products /grades from -the -bag rather than in-house compounded rubbers

TPE supplier solutions:

- Meet global specs (not always easy)/local pressures
- Assure lot-to-lot uniformity. Build an unassailable reputation
- Follow OEM regional shifts
- Assure global footprint

The challenges: save weight while adding value. Help meet steeply increased emissions requirements

Background:

- A key target with new fuel economy regulations
- TPEs generally have a density advantage vs. incumbents
- Weight savings via parts consolidation are possible (especially where fastening devices can be eliminated)

TPE solutions:

- Target metal substitution
- Look for hard/soft combinations
- Foaming
- Thin wall where possible
- Solve the adhesion problems
- Seek multi-functionality (e.g. EMI shielding TPE gaskets)

The challenge:

- Reduce total parts cost

Background:

- TPEs generally cost more than incumbent
- OEMs working to examine total costs
- OEM demanding high performance, form and function, perceived quality
- Avoiding "cheap plastics" look

TPE solutions:

- Parts consolidation
- Redesign for ease of assembly
- Labor cost reduction
- Design for disassembly and recycling

The challenge:

- Improved adhesion is an application enabler
- Value add potential

Background:

- Application in coatings, multi-materials , construction, blends, fillers, reinforcements, surface decorations
- Logos

TPE solutions:

- Sprayed surface adhesion promoters
- Additives and compounds
- Usually polar/non-polar combinations
 - -- MA/resin combinations
 - -- SMA

The challenge:

- Incumbents can be replaced

Background:

- Many early entry TPEs over engineered
- Incumbents with brand recognition are vulnerable
- New suppliers in Asia challenge western TPE incumbents
- Warranty concerns
- BRIC quality/price tiers may differ than those of global incumbent TPE suppliers

TPE Solutions:

- Provide equal or greater properties vs. incumbent TPEs

THERMOPLASTIC ELASTOMERS IN WINDOW ENCAPSULATION

Photo source: Kraiburg

Photo source: Robert Eller Associates LLC

- Application: Rear quarter window encapsulation seal
- TPE Candidates: PUR, o-TPV, SEBS (H-SBC), PVC, EPDM
- Key Properties: High flow (to reduce breakage) Glass adhesion UV/weather resistance Low compression set Squeak resistance Scratch resistance
- Notes: Example of intense inter-material competition
 - Example of static seal application
 - Two shot adds value
 - Colors?
 - Narrower profiles?
 - Systems cost save opportunities
 - Polycarbonate glazing could shift requirements

 \overline{O}

Photo source: ExxonMobil

- •Application: Short clean air duct
- TPE Candidates: o-TPV, PVC/NBR
- •Rubber competition: EPDM
- Key Properties:
 -Constant temp resistance to 135°C
 -Oil resistance
 - 75A hardness
- •Fabrication process: Injection or blow mold
- Notes:
 - -Recent example(not shown) is Hyundai short air duct based on Santoprene [™]TPV
 - -s-TPVs and COPE for higher temp ducts
 - Weight and cost save vs TS rubbers
 - Recyclability a benefit of TPE use

- Improved SEBS grades
 - Slush moldable

 $\overline{\mathbb{O}}$

- Coated fabric grades
- Able to compete with o-TPV in some applications
- Competition from improved PVC grades to answer SEBS challenge
- Bio-elastomers
- Continued growth of multi-component technology
 - Overmolding/2-shot and extension to foaming methods
 - Co-blow molding
 - Profiles
- Evolution of soft touch: silky feel
- Chinese commodity resin suppliers catching up in quality and versatility, not there yet

TECHNICAL TRENDS AFFECTING AUTOMOTIVE TPEs

• COPEs:

 $\overline{\mathbb{O}}$

- High temperature resistance
- Adhesion
- Haptics
- Multi-shot
- •TPOs:
 - High flow
 - Thin wall capabilities
 - Use in acoustic components
 - Role of POEs
 - Renewed skins growth
- o-TPVs:
 - High flow/glass adhesion grades for window encapsulation
 - Continued penetration into body seals and glass run channels
 - Improved attachment systems for body seals

GLOBAL AUTO TPE STRATEGY ANALYSIS WHEEL

THE PARADIGM HAS SHIFTED IN GLOBAL AUTOMOTIVE TPES

- Grade commoditization → bifurcation into commodity & specialty
- Emerging auto markets:

 $\overline{\mathbb{O}}$

- Highest global growth rates
- Auto TPE demand via both unit volume growth and substitution
- Auto TPE supply chain broadening, new entrants
- Emergence of Asian TPE competition
- Emergence of global auto platforms
- Emergence of global TPE standards (starting with TPOs)
- Opportunities created by TPEs well suited to new challenges:
 - High temperature
 - Luxury feel
 - Lightweighting/parts integration

SUMMARY

- Most of the TPE challenges are easily met via the inherent capability of TPEs
- Globalization will help TPE penetration into automotive
- Auto TPE property envelope is expanding enabling access to new targets:
 - Heat resistance
 - Soft touch
 - Foaming

 \bigcirc

- bio-TPEs
- Fabrication methods → offer process cost save
 - Two shot
- Core-back methods
- Co-processing (co-blow, coex)
- Global platform trend offers global TPE opportunities
- Regional auto TPE growth
 - Emerging markets (increased substitution to Western levels, organic growth)
 - Western, global TPE brands will benefit most in short term
 - Slowing of European markets

- "Windows" to TPE Growth:
 - Adhesion
 - Foaming

 \bigcirc

- Parts consolidation
- High temperature resistance
- High flow
- Soft touch
- Surface quality
- Interior lighting